
I
~

NORTHWEST NAZARENE UNIVERSITY

Creating and Configuring a Continuous Integration Machine for a Software Package

THESIS

Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE

Nathan Emerson

2017

THESIS

Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE

Nathan Emerson

2017

Creating and Configuring a Continuous Integration Machine for a Software Package

Author:

Nathan Emerson

Approved: ~
Barry Myers,h.D.,Prof sor of Computer Science, Department of
Mathematics and Computer Science, Faculty Advisor

Approved:

Approved:

David Johnson, Senior Software Engineer, Schweitzer Engineering
Laboratories, Inc.

Barry Myers, Ph.D., Chair,

Department of Mathematics and Computer Science

ABSTRACT

Integration of a Continuous Integration Machine with Automated Functional Test Suite for a
Software Package.

EMERSON, NATHAN (Depaiiment of Mathematics & Computer Science), MYERS, DR
BARRY (Department of Mathematics & Computer Science).

A system for running Continuous Integration (Cl) testing on a commercial software package
called Device Manager, created at Schweitzer Engineering Laboratories, Inc., was created using
Bamboo, an enterprise business tool from Atlassian. This system utilizes existing tests and
makes them compatible with Bamboo. The system uses Windows commands to utilize file
operations on the host system and pulls files down from code repositories. The CI machine
builds the solution using a code base, then runs tests if the build is successful. The system runs
through two types of tests. First, it executes several thousand unit tests, which test source code
functionality. Second, the CI machine records all the test results and build files and publishes
them as artifacts that a user can download and utilize for debugging or manual testing. The CI
machine was completed and successfully runs on each new build of the software, providing pass
or fail values for tests that were run, which gives Software Engineers the knowledge needed to
correct or maintain the software's codebase.

iii

Acknowledgments

I would like to thank the Device Manager team at SEL that were on the team throughout

the length of my work on the project. David Johnson, Alan Morrison, John Bird, and

Chad Johnson, thank you for your support throughout my internship and my work on

this project. I would also like to thank Amanda Marble, without whose help with career

advancing activities and resume guidance I may not have been set up for success in my

internship. I would lastly like to thank Barry Myers and Dale Hamilton, the professors I

have learned from over the last four years of class.

iv

Table of Contents

Title Page .. i

ABSTRACT ... iii

Acknowledgments ... iv

Toblecl~~~ .. v

Table of Figures .. vi

Background .. 1

Planning ... 3

Execution ... 4

Conclusion ... 1 O

Works Cited ... 12

Appendix .. 13

A.1 - Bamboo Project View .. 13

A.2 - List of Tasks on "Compile and Unit Test" Job ... 14

A.3 - View of the task editor ... 15

A.4 - Build Results ... 16

A.5 - Sample output during a build runtime ... 16

A.6 - End-of-project Build View .. 17

A. 7 - Completion of a Continua Cl build .. 17

A.8 - Bamboo test results with a failed test .. 17

A.9 - Bamboo test results with the failed test fixed .. 18

V

Table of Figures

Figure 1 - Bamboo Plan (1] .. 5

vi

Background

When creating a software product, several different stages and milestones are

achieved before the software is released to the public. These stages include planning,

implementing, and testing. When implementing a software product, code produced by a

software engineer needs to be verified for correctness and functionality. This is

commonly referred to as unit testing. "A unit test is a piece of code that invokes another

piece of code and checks the correctness of some assumptions afterward. If the

assumptions are wrong, the unit test has failed" (Osherove 4). These unit tests are

executed by a developer before their changes are put into production code, but for

every version of the software built before a public release, unit tests need to be run so

often that it becomes burdensome. Each test needs to be run for each build in order to

verify consistent quality of the software product. This is where a Continuous Integration

(Cl) machine comes into the picture.

A Cl machine automates several of the stages that a developer would normally

take to perform all created unit tests, as well as extend the possibility of what resources

a developer has available. All of this happens on a Virtual Machine (VM). A VM is used

because a developer has higher control over the state of the Operating System. The

developer is able to control the software, settings, and system resources on the VM.

This limits the variability of the environment that the Cl build will run in. An example of a

fully-functional Cl machine is where the machine pulls the source code from one or

more repositories, compiles and builds it, then runs unit tests on the built code. After the

1

unit tests have completed, the Cl machine generates a report of the test results,

showing where failures occurred, if they did occur at all. Cl machines are used on

products that go through several milestones and versions in order to check consistency

across the entire application.

Schweitzer Engineering Laboratories, Inc. (SEL) produces a product called

QuickSet, which allows power engineers to work directly with settings on devices within

a power substation. These devices include digital electric relays, metering devices,

security devices for the power grid, and communication devices that can group several

devices together. Within this QuickSet application is a plugin called Device Manager.

Device Manager is aptly named, because it extends the capabilities of QuickSet and

allows the user to manage the devices themselves instead of just their settings. This

includes but is not limited to the names and IDs on the devices, the connection paths

the devices take, and the versions of settings on the devices. It also manages any

scripts, passwords, or users that may interact with these devices. A project that worked

with Device Manager was desired for work on a senior capstone.

Deciding on a worthwhile project was difficult. There was an opportunity to

combine work for this project with an internship at SEL. In this way, the project overlaps

both the academic and professional spheres, giving benefit to both. To work on the

software package that the team is developing would be too large of a project and

unfeasible because of the types of tasks that would likely be assigned in addition to this

project. On top of this, the time constraints placed on the project within the software

development cycle were a challenge. Each milestone and the work done on that

2

milestone would be too small and would require too short of a time frame for the

requirements of this project before moving to a new task.

The idea of moving existing Cl machine's functionality to work on Bamboo was

brought up. Bamboo is a Cl build machine tool produced by Atlassian, and it couples

with Atlassian's other tools to make a combined single experience for the user. After

consideration, this project fulfilled the needs of a group of users, was wanted by those

users, and met the requirements of the project scope. The Cl machine capability that

the team was currently using was adequate, but lacked several features that had the

potential to save the team time and effort.

When work on Bamboo was initialized, the amount of people in the company that

were using it for their team was low. Since the Atlassian tools were new, most teams

that had migrated to using them were still learning how to use the error reporting and

repository management tools. Bamboo was largely pushed to the side as something to

focus on once everything else is complete. Because of this, there was not a lot of

internal documentation from other SEL employees that could be used to help with

understanding or implementation.

Planning

At the start of the project, the Device Manager team already had a Cl build

machine running and functional, using a service called Continua. This service had many

features that the team wanted and needed. What Continua did not have was a good tie

in to other software systems and tools that the team used. The team had recently

transitioned to using the Atlassian suite of tools, which contained tools such as Jira,

Stash/Bitbucket, Confluence, and Bamboo. Jira is an issue tracking tool, where team

3

I
I
i
@:

members are assigned tasks to do, and tasks are created that relate to one another,

leading to easier issue management. Stash is a tool that hosts repositories on a server.

Partway through the project, Atlassian changed the name of Stash to Bitbucket, and it

will be called that throughout the rest of this document. This repository also has pull

request features. This means that a user can make code changes then use a version

control system (like Git) to commit these changes, push them to a server, then "request"

a merge of the changes to the "main" branch upon approval of a set of reviewers.

Confluence is a knowledge base, which can take several different meanings depending

on what a team is using it for. Some teams store specifications there, others store how

to documents, and others use it for project lifecycle tracking. Bamboo is Atlassian's Cl

machine and build deployment tool. This allows Bamboo to run as a Cl machine (like

Continua) and also send projects out or on to their next stage in the development cycle.

While Continua was good, it was not great for meeting the needs of the team.

With unit tests running in Bamboo, a failed test could occur, and Bamboo could easily

create an issue in Jira, rather than having to manually type out the issue and ensure its

correctness. Bamboo does this work for the developer. Since the developer is not

spending time writing up issues, they can be actively solving the issue instead.

Execution

Bamboo uses five different categories of granularity within a Bamboo project.

There is the project itself, the plan, the stage, the job, and the task. The "project" is an

umbrella term, which is often used for teams to put several different Cl machine setups

underneath. For instance, the project was named "Device Manager Cl" for this project.

Under this project may be several plans. Each plan is a specific build and test

4

environment for the software package. An example may be if a team wanted to test their

software on a Windows 10 platform and also a Linux Ubuntu platform, they may create

a plan for each and have them run simultaneously.

A plan consists of several subcategories (Figure 1): stages, jobs, and tasks.

Plan

Task Task

i -i
Task

-i
Task

Task

Tasks execute sequentially within a Job.
Jobs execute in parallel within a Stage.
Stages execute sequentially within a Plan.

Figure 1 - Bamboo Plan (Bamboo)

Stage

Job
Task

Task

i
Task

When a plan has more than one stage, the stages execute sequentially, they

may not execute out of order. For this project, there is only one stage. A user may want

multiple Stages, to be used for building the software, testing the software, perhaps

installing the software, and running automated functional tests. Another possible Stage

is a deployment stage, where the software is pushed out to a public server for download

or to the next step in the software development lifecycle, depending on if the tests in

previous Stages passed or failed.

5

A job is executed at the same time as other jobs within the stage. Each Job could

also be what has been described above for potential various Stages. In this matter it is

up to the Bamboo plan creator to determine if the tasks that need to be done should be

done sequentially or in parallel. Also in the case of this work, there is only one Job. The

Job is titled "Compile and Run Unit Tests." In the diagram there are actually two Jobs,

the other being "Run Automated Functional Tests." When this project started it was the

intent to get Bamboo running then to add the functional test suite that tests the software

as a user would see it. However, due to the evolving needs of the team, that ended up

dropping off of the priority list, as the software projects that the team was working on

took a turn towards a different testing implementation. The Job that was created,

however, had several tasks in it.

A task is the smallest level of project building, as it defines exactly what should

happen and when. Tasks run sequentially, so this is as close to programming as

possible for a Plan like this. A task for this project could be checking out the code from

Git repositories, building the code, or copying files to various locations on the VM.

The first step undertaken was analysis of the current Continua Cl machine. In

order to get a complete and accurate analysis, each task needed to be understood

enough to port over to Bamboo. Continua and Bamboo have similar functionalities and

abilities, but they do each task in slightly different ways. A task that was different was

how each handles file management. Continua has built-in procedures that move files,

while Bamboo relies on the user to create scripts that will do that when called. Most of

the built-in procedures of Continua do not match up well with built-in features of

6

Bamboo, so most of the tasks in Bamboo are called using a command line script on the

VM.

These differences were not realized at first. Initially, switching the tasks from one

Cl service to another seemed to be fairly straightforward. The tasks included checking

out the source code from all the repositories needed, compiling three different solution

files, running the unit tests, then parsing those unit tests. In Continua, all of these tasks

had built-in components, able to run each just by giving some parameters and locations

in the options for that task. For example, there was a compile using Visual Studio

command in Continua. A similar Visual studio compilation task was available in

Bamboo, but each time it would try to compile the code, the compilation would hang

indefinitely and the build would go on without ceasing until a user manually stopped the

build. Often this was found out when a build would be started right before clocking out

for the day, returning the next time to the office (typically about 20 hours later) and

finding the build still running, stuck on a compilation task, not advancing or giving any

sort of indication that an error had occurred. When this happened, the run would be

stopped, the log file downloaded, and it would be scoured to find what went wrong or

what happened.

What was found is that one of the services was run by a user, and since no user

had been assigned, it used the default value, which is where the local system acts as

the user to the service. Because this is an SEL application in a test build, an SEL

username was required for that step, so the fact that no SEL user was introducing that

step was holding up the build process while it waited for an SEL account to allow

access to a certain feature of the program.

7

Once this was discovered, an attempt was undergone to remove restrictions on

the VM that the build was on. Running the Bamboo service uses the local system to run.

This was changed in order for the service to run off of a username that the Windows

operating system recognized. This was the username of an SEL employee. It worked,

and it continued to work until later in the process of creating the implementation of this

tool for use by the Device Manager team. Because this solution worked short-term, it

was kept and it allowed for progress on other parts of Bamboo. Later in the project, the

service was updated to use a username that was created specifically for the purpose of

use on Cl build machines.

After this setback, much of the task building and ordering was fairly

straightforward. As seen in Figure 2 (A.2), fifteen tasks were created. The first two tasks

were "Delete [Unit Test Nlog Files]" and "Clear NUnit Cache." These tasks were put in

place to clean up any potential residue left over from tests that ran before the current

build , in an attempt to get the VM to as clean of a state as possible, limiting outside

factors that could influence the test results. The next step found all the repositories that

Device Manager needed code from and checked out the specified branch that the code

was to run from. This task could be customized to fit each plan. For instance, if one plan

was to always test production code, it would stay on the Master branch. If a plan was to

test a certain step in the software development lifecycle, then it would be set to a task

branch or a project branch, all hosted in Bitbucket. This shows another useful tie-in to

the other Atlassian tools, for Bitbucket and Bamboo work seamlessly with one another

on tasks like this one.

8

After copying a DLL file to another location on the VM, the Job starts to compile

three different Visual Studio solution files. It compiles a common library that SEL uses, it

compiles the project itself, then it compiles a separate solution that includes the unit

tests for the project. To run a lot of the unit tests, a pseudo-database needs to be set

up, so the next task does just that. After copying some build files for artifact saving later,

Bamboo then starts running the unit tests. Since Device Manager is written in C#, there

is an open source unit test framework called NUnit that is also written in C#, so that

framework is used for writing and executing unit tests. Bamboo has an NU nit runner, but

as mentioned before, the configurations did not meet the needs of the team, so a

general command line script was used instead. After the tests ran to completion, there

needed to be a way for the tests to be validated and checked for passing or failing

indicators.

Out of the fifteen tasks, only two were not started using a command line script.

Parsing the NUnit results was one of them. The NUnit tests are parsed by this task and

displays within Bamboo to show what tests passed, what tests failed (if any), and shows

how many tests were skipped (if any). Skipped tests are skipped because of the C#

code in the test itself. Skipped tests are reported in the final output (Appendix A.8, A.9)

This task is where it all comes together and becomes a usable software tool, becoming

valuable to the team. Once this step is complete, some files are copied in order to be

used as artifacts, namely the Device Manager NUnit log files. Now that the Stage has

completed, the build completes, and the result is a pass or fail on the build, artifacts

from the build, and a clean VM. Once the build finishes, it reverts the VM to a clean

state, removing all SEL software to protect against potential influence of remnant code.

9

Conclusion

As the implementation on Bamboo was completed, several ideas and lessons

were learned. One lesson learned was how to analyze actions taken by people before

any involvement with a project to see what they meant by taking those actions. This was

shown in the ability to look at the way that Continua was set up, analyze what it meant,

and adapt the tasks to fit a Bamboo implementation of the same goals.

Porting the Continua Cl machine to a Bamboo implementation was a valuable

and important step in the team at SEL. By moving the build machine over from a good

service to a great service that also has tie-ins to other services the team is actively

using, the benefits are invaluable. To have a consistency between tools is desired, and

it helps that the GUI look and feel is the same throughout the tooling, making it simple

for a user to navigate between issues and builds, documentation and code repositories.

Throughout this project the ability to communicate effectively was necessary, and

throughout the experience more effective communication was learned.

A challenge experienced throughout the project was the lack of knowledge about

the system and what Bamboo could do without having to write the scripts myself.

Because each build took upwards of fifteen minutes, only a couple builds could be run a

day if there was to be time between builds to analyze the results and fix or add to what

was already there. Another challenge was the time commitment between working on

Bamboo and working on other tasks assigned for different projects. Because this project

was completed while at work, other tasks assigned that were not part of this project

needed to be completed at the same time. Those tasks were often maintenance tasks

10

where a small issue would be fixed, but there was also a large addition to the software

interface and user experience that needed to be done, and that often lasted for several

hours at a time. Most of the work on the Bamboo project was completed while taking

classes at school as well, so only part-time work during weekdays was available.

Overall, while project requirements change and timing does not always work to

previous plans, this project became functional and usable by the Device Manager team,

and the value of this Bamboo Cl machine will only continue to grow as more is added.

11

Works Cited

Bamboo Plan Anatomy. Digital image. Atlassian. Atlassian, 2017. Web. 30 Mar. 2017.

<https://confluence.atlassian.com/bamboo/configuring-plans-289276853.html>.

Osherove, Roy. The art of unit testing: with examples in C#. Shelter Island, NY:

Manning, 2014. Print.

12

Appendix

A.1 - Bamboo Project View

~pto,e,ttl t 0'S4.•DN'<ewanag,et I ow.ce~a

Configuration - Device Manager Cl
Col'll~e...,r,1[)Nkc-.,~

• 0 0 0 00 000 00

Pwlddiib ~ Rt9)Sl(Gnn T~ Brar-,ches ~let ~$D"l1 Noll,c~ ~ l,bc~ AuOIIOg

Plan contents

@ Run .. ,0N.l:IOM ..

ComptHi O.vlc• M,1n1ger
Jind Run Unit t'ISll

Each'>tb;,e~<ll3pt,Mr~~a\.ttp•7W\)<JUJIJUol<lyoc•.-n A~fM'/<or.taononeo,~ejOO'\-.:,.;.nBar«.oc¥1CA."CU°~np.,r.>,"4.-t fOJe.•¥l'l)le yourVjl'ltNVe.i~i,xc<,Vr(,l.at.¢n,OO,, Jo1,r,...Wbyonco.
n:;ire-.ta,.)CSfOtvaif10Ui~:t-.g)O(ls IOl.~U(Jis.l,),)efOc'~~ly.bi

Run AtJIOftUUC F T THIS
Comp~• D•Vk• Manager and Run Untl TH ts (>•

• AOdfob

• Add job

13

A.2 - List of Tasks on "Compile and Unit Test" Job

,. Script
0 Delete [Unit Tesl tllo9 Files]

Script
0 Clear NUnll Cache

Source Code Checkout
0 Gil Checkout

Script
0 Copy (SELCommurncations dll)

Script 0
• Compile Common Core (SEL Slorage) Solubon

Script
0 Compile De'1ce Manager Solubon

Script 0
Compile De·Jice l.lanager Unit Tesls

Script
0 Install De'1ce I.tanager Database ,n Poslgres

Scnpt 0
Copy (All Build Files lo OulckSel Install Locabon]

Script
0 Copf [All Build Files to OuickSel Install Locat1on]

Script 0
Copy [All Build Files to Ou1ckSet Install Locabon]

Script
0 Run Device I.tanager Unit Tests

NUnit Parser 0
Parse NUn1t Test Results

Script
0 Copy [Un1l Test NL09 Files]

Script 0
Copt(DB Installer;

14

A.3 - View of the task editor

S<:npt
Oe!ele {UM Tes! NL09 Ftlts]

S<:ript
Cleat HUrut Cadle

Source CO<le Checkout
Cil ChtckOU1

Script
Cop1(SELCommun1cations dll)

Scrtpt
Comrxle Common COJe (SEL Stora~) Solub<-n

Scrtpt
COmptle De.1,;.e Liana~, SOiution

S<:flpt
Comp,le Oe-,~c:e Manai;er Unit Te sis

Scnpt
lnslall Oe,ice uanaotr Oatata,;e ln Post91es

Scnpt
Cop) (I-JI Ou Id Fil,s lo Ou;cJ..Sel lnstJ!I Lceat-on}

S<:npt
Cop, (All 8u1ld Files lo QuiQ"Sel lnSIJ'l loc.a!!onJ

S<:npt
Copf l,M Sudo Files lo OVit5cSet lnSl3lf Loubon)

0

0

(

0

0

0

0

0

if- Scnpt C,
~- Run Oe-.1ce Manager Unit Tests

NUOIIParser
Parse NUM Test Results 0

Script
COP/(Uml Test t..ft.og F1•es)

0

Scnpt
Cop/ {DB Installer) C.

Drag tasks here to make ihem t,na1

Add task

Script configuration

Task descnptlon

Run Device Manager Unit Tests

0 Disable this task

Scnpt IOcatlon

lnlme

t:l Run as Powershell sc rlpt

G
lndlcat~s I.hat so,pt Is a Po-Ntrsttefl settpt

Scflpt body'
t-cCM Ott

3 e ct'IO set envi ronl'.:ent variables
4 set Repofolde,.• S{ba~boo.Horkspace}
5
6 i f exist "MepoFolder-~\ OcviceMona1er \8u i lds\8in\ Otbu &\ Ocvicd'.ana1erUnitTest . x.ml " (

echo del "IJ:l:cpoFolderl:\Oevicc>IOna1e r \8uilds\8in\Debl.le \ OeviceH1na1e.-vnitTest .xal "
de 1 "SRepoFolde.-" \ Oev iceHanaa:er\Bu i lds \Bin\Oebua:\ Dev icd'dnaee rUni tT est . xal ..

9)
10
11 e chO Clea.- SH.boo Envfronr.ent Variabl es
12 for / f • usebackq tokens • l• deli•.s ua in (' se t bDEboo_·) do set n.t•
13

:; ~~~~P;~~~::o:~ :.s F: !::) ~~:i ~t~! ~ 3~~1~~~~~~t~:~:~;:::!~:::~. :::~:;::;!~:~~;;~:;:~:~:~~:~~!:: ~
16
17
18

ruu,de>·~s bat or ps 1 Me. unoc lbwsh c.ompabble s01i;t)

Afgument

A1gumen1 fQU ~ 3nt to pass 10 the command .AJguments ..,.,:ti spaces In them must be Quoled

Environment vartablCs

Ertra enwonmentvartabies e o JA'.',_OPTS::•-xnu:256m -Xms 128m"' You can add muit!plt parameters separated by 3 space

Worl<Jng sub d1re<toiy

Speot1 an altemah~ sub-d rector, as Y.0rttng director, for the task

- Cancel

15

A.4 - Build Resu lts

0 #24 Rebuilt by Nathan Emerson

0 #23 Rebuilt by Nathan Emerson

0 #22 Rebuilt by Nathan Emerson

0 #21 Rebuilt by Nathan Emerson

0 #20 Rebuilt by Nathan Emerson

0 #19 Rebuilt by Nathan Emerson

0 #18 Rebuilt by Nathan Emerson

0 #17 Rebuilt by Nalhan Emerson

0 #16 Rebuilt by tlalhan Emerson

0 #15 Manual run by Nathan Emerson

0 #14 Rebuilt by Nathan Emerson

0 #13 Manual run by Nathan Emerson

0 #12 Manual run by Nathan Emerson

0 #11 Rebuilt by Nathan Emerson

0 #10 Rebuilt by Nathan Emerson

0 #9 Manual run by Nathan Emerson

0 118 Rebuilt by Nathan Emerson

0 #7 Rebuilt by Nathan Emerson

0 #6 Manual run by Nathan Emerson

0 #5 Manual run by Nathan Emerson

0 #.t Manual run by Nathan Emerson

0 #3 Manual run by Nathan Emerson

0 #2 Rebuilt by Nathan Emerson

0 #1 Manual run by Nathan Emerson

A.5 - Sample output during a bui ld runtime

:C-Qn•HIII Cf U:7t f'r..: .. • U.<11 p...,, _. :.-1
u.e.:,-101, .:• o a .__, .. ,..,., _. ,. • ...,.., .. . _,
u--on-nu u u n ~ u ,u,, J.-.,_,.. 1.-Ul .. . c-,
u-c..,-:-ou ,,-u n .:0.MU U ... ~, .. , olhr
U..¢c,-1e1,.;, n·u
:,~-1c:1 e• • • .:• o.,,.,, : • c , a - , -i.• , u \ N t l dl• • l 1~ •J.C,A--'Oll \ o«u 1 .. u or4.ouH_..\ ,h, 1l>u o \ h 1..,u o:i.,,~~u • ..._..

1 month ago

1 month ago

1 month ago

1 month ago

1 month ago

1 month ago

1 month ago

1 monlh ago

1 month ago

1 month ago

1 month ago

1 month ago

1 month ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

U-¢1:c•inc 01 U :U :a.ou : : , p.aou un ~ .. , . 1 n c-uo,u n • ~4IU 4J ,:.;u b-yiul . un unr.c-u-. U U UJ l>1u , , , HI u ueq, 1u n1 11,, .. 1. 1 1t~ ... 7't .. , ..,,. 1t 1, 1>yu , 1
U•OH•UU '' H n ~: .. , ,u J ··~· nH • .,,. .. , .
JC-.0r,t1.•J~ U Un lt I , ... , ,_ non 1>ru • 1. a n Ui.un,ul- • 1nu t,yt.u 1. sn n r U•'f• iio1to bJtu '. : h --r,,,, .. c al:>.h cJ~l -.,.., ..

U ~P1014 e, u .u ~ l »loc\ C9\""1Hr .. - 101:t b7C•• ,-o ' "
u~~ 10a ~ n ·a
U ·<k•Pl¢1' tf .i..:, 11n at etn, ~uu l M
U •Oel· IOU U O n
:l~•Ulf M •• ,u IXZ U o<lu · U H ·
U-~,;•1'1C C4 O ·U t:uu: 1 -•·
H ·<•u-:1a H u n
u~-.:~:, C1 n n i:,,a.uuull -~.-
:C~•lCU CC ,1, a CK 1,),,tJtlO)U

1C-0Cl•1~H ,,i OU J ""°'iE<I• •

CUU, S flH t,y,;u
nu, 1 1ua ,...,.. ..

UIUl>H I ,ecH ~ ~ u
unto I U • U ll 111"1'• •

' ' ' l>S'I:••

::::~~!:: ::-::,!: oLn all f'lacu- "h.-C- u .u.,• ti.Cl. r• h u ,.:•" • auoa.4 oo4-o 4U•U

16

6 minutes

56 seconds

7 minutes

8 minutes

6 minutes

6 minutes

6 minutes

7 minutes

6 mtnutes

6 minutes

7 minutes

7 minutes

5 minutes

1 minute

1 minute

1 mmute

1 minute

1230 minutes

2 minutes

1 minute

1 minute

1 minute

UnKnown

16 minutes

A.6 - End-of-project Build View

0 •84 Manual run by flathan Emerson

<D •83 RebuCl by Naltlan Emerson

0 •82 Manual run by Natnan Emerson

0 #81 Manual run by riathan Emerson

(D •so Rebuilt by Uathan Emerson

(D,119 Manual run by uatnan Emerson

(D#76 Manual run by Nalhan Emerson

(D #7l S<he<luled

0 •76 SCneduled

0 #75 S<he<Juled

A.7 - Completion of a Continua Cl build

Build - 1.0.0.99

17"'1 U)Ci UNll\$1'St{.)M,j NIJl'AClS~I (IW<IUIJIJ lll~Tllot ft.WI.SI'! IWllft{l tlt C0tolMIKI,~

--.........
"""" -

....

~-2.,1,..

Build Compll'ted

a.Id '•Ct l4dd/'14if lfC')

lllQb,Ard~-b.rd

A.8 - Bamboo test results with a failed test

Test results

2 cays ago 16 minules

2 days ago 16 minutes

Unk.nOwn

3 days ago t6 m!nutes

3 days ago 16 minutes

3 days ago 16 minutes

3 days ago < 1 second

3 days ago 15m!nutes

4 days ago t5m:nutes

5 days ago 15 minutes

6525 0 0 0 0 0

i= 6,295 lesls In IotaI 0 1 lesl railed t 1 ra11ure 1s new 0 71 lesls were quaranlined l skipped © 14 minutes taken In total

Test

0 RdbFI1e1nroTesls FlnalaeFIleRecovery_FIieNotRecovered_USU1gllewFlle 0

Slopped le<.;ts 71

Test

0 Dev!CeC>lspatchBullderTests Shutdo~n_DeadChlld_HardShutdownlnvol<ed 0

0 ImponExponUld1tyTesI ExponObje<lsToF1Je_ExportWrthCuslomPassw0<d_ExportSuccessruI 0

0 ImponExponut,~lyTest E.xponob;ectsT0Ftre_ExportOpt,ona1oa1aw11hlargeobjeetsW1thCustomPassword_ExportSuccessruI0

0 lmportE.xportUtllrtyTcst ExportOb;ec1sToF11e_E.xportInIegratedset~ngsOpt100aIoa1aw,thBlankPassword_E.xportSucce-.;sruI 0

17

6265 passed

3 o/6265 fa.!ed

Testiess buiJd

6265 passed

6265 passed

6265 passed

restless buHa

1 or 6265 ra 'ed

6265 passed

6265 passed

Falling since

112 (Scheduled)

#112 (Scheduled)

#112 (Scheduled)

A.9 - Bamboo test results with the fa iled test fixed

Test results

; ;; 6,349 tests In total ! 1 test was ftxed (D 71 tests were quaran~ned I skipped © 9 minutes laken In total

Fixed tests

Test

(0 RdbF1letnloTests Fin3'!leFlleRecovery_FlletJotRecovered_UslngtlewF1'.e 0

Sk,pped tests 71

Test

0 DevkeDlspatchOullc!erTests Shutdo·•11_DeadClldd_HatdShutdO\\'l\lnvOl<ed 0

0 lmportExportUlllrtyTest ExportOOjectsToF1te_ExportW1thCustomPassword_ExportSuccesslul 0

0 lmportExportUhlltyTest ExportOb1ectsToFlie_ExportOptionatDataW,thlarge0bJectsW1thCustomPassword_ExportSuccessru1 0

0 lmportExportUhl1tylest ExportObjectsToFlle_Exportlntegrated5eltlngsOphonatDataWithBtankPassword_ExportSuccessrut 0

18

Falling since

#400 (Sche<!uled)

Falling since

#112 (Schedu'e<!)

#112 (Sche<!uled)

#112 (Sche<!uled)

